Cap sur l'école inclusive en Europe

Pedagogical Sheet

Approaching the Pythagorean theorem with visually impaired pupils

Section of the Module/E

Contact : Pascal Bahu APAJH/Cahors France

The Pythagorean theorem is undoubtedly the best-known theorem: all children learn it one day or the other especially in the $3^{\text {rd }}$ grade of secondary school.

Of course, over the years, it is not uncommon to end by completely forgetting its meaning, and what remains of it is only a kind of song that is sung without understanding it, as in the Franc-Nohain's quatrain: "Le carré de l'hypoténuse / est égal si je ne m'abuse / à la somme des carrés / construits sur les autres côtés."("The square of the hypotenuse / is equal if I am not mistaken / to the sum of the squares / built on the other sides.")

This theorem represents perhaps the first mathematical statement that is not obvious and that is hard to believe since it comes as such a surprise.

The proposition of this manipulation helps visually impaired pupils to perceive this theorem and to grasp its meaning.

How to use a puzzle made by Jean Meyer:

A puzzle with, in the middle, a right triangle with sides called \mathbf{a} (small side of the right angle), \mathbf{b} (large side of the right angle), and \mathbf{C} (the last side). This triangle is blue and smooth to the touch. The surfaces $\mathbf{a}^{\mathbf{2}}, \mathbf{b}^{\mathbf{2}}$ and $\mathbf{c}^{\mathbf{2}}$ are empty, with in the background a tactile material (rubbery waves touch):

Surfaces $\mathbf{a}^{\mathbf{2}}$ and $\mathbf{b}^{\mathbf{2}}$ are filled with the puzzle pieces:

The surfaces of pieces are tactile (bumps touch).

Zoom :

These same parts are removed from surfaces $\mathbf{a}^{\mathbf{2}}$ and $\mathbf{b}^{\mathbf{2}}$ to arrange them differently and fill surface c^{2}.

Zoom :

All pieces are used, and perfectly cover the surface.

